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Overview

Zeta functions

For X a smooth proper variety over a finite field Fq, its zeta function is

ζX (s) =
∏
x∈X◦

(1− |κ(x)|−s)−1 X ◦ = {closed points of X}

= exp

( ∞∑
n=1

#X (Fqn)
q−ns

n

)
,

viewed as an absolutely convergent Dirichlet series for Re(s) > d = dim(X )
which represents a rational function of T = q−s . It factors as

PX ,1(T ) · · ·PX ,2d−1(T )

PX ,0(T ) · · ·PX ,2d(T )
,

where PX ,i (T ) ∈ 1 + TZ[T ] has all C-roots on the circle |T | = q−i/2. If
X lifts to characteristic 0, deg(PX ,i ) is the i-th Betti number of any lift.
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Overview

L-functions

For X a smooth proper variety over a number field K , its (incomplete) i-th
L-function is

LX ,i (s) =
∏
p

PXp,i (s)−1

where p runs over prime ideals of the ring of integers of K at which X has
good reduction, and Xp is the special fiber of the smooth model of X at p.

For best results, this product should be completed with additional factors
corresponding to the remaining (finite and infinite) places of K ; the result
conjecturally admits a meromorphic extension and functional equation
(known in a few cases), and an analogue of the Riemann hypothesis
(known in no cases).

In some cases, LX ,i (s) factors as a finite product of functions with good
properties, corresponding to a decomposition of X into motives.
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Overview

Computations of zeta and L-functions

The goal of this talk is to survey some aspects of algebraic/arithmetic
geometry where zeta functions and L-functions, and numerical
computations of them, play an important role. (We generally assume that
varieties are being specified by explicit equations.)

In principle, given (a bound on) deg(PX ,i ), one can compute ζX (s) by
brute force by enumerating X (Fqn) for n = 1, 2, . . . . This is impractical in
all but a few cases.

A more robust approach is to interpret PX ,i (T ) = det(1− TF ,Vi ) where
Vi is a certain finite-dimensional vector space over a field of characteristic 0
and F : Vi → Vi is a certain automorphism. E.g., one may take
Vi = H i

et(XFq
,Q`) for ` 6= char(Fq) prime and F to be geometric

Frobenius. However, étale cohomology is not defined in a particularly
computable manner, so this only helps in a few cases.
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Overview

Computations using p-adic cohomology

For ` = p = char(Fq), étale cohomology with Qp-coefficients does not
satisfy the Lefschetz trace formula for Frobenius. Instead, we use crystalline
cohomology with Qq-coefficients; this is not defined in a computable
manner either, but it is equivalent to other constructions which are.

Notably, if X is smooth proper over a number field K and Xp is a reduction,
then crystalline cohomology with Kp-coefficients can be identified, as a bare
vector space, with algebraic de Rham cohomology; in particular, this space
is “independent of p.” A construction of Monsky–Washnitzer describes the
Frobenius action in terms of some convergent p-adic power series.

This can be made effective in a broad range of cases. The subsequent talk
by Edgar Costa will treat in detail the case of (generic) smooth
hypersurfaces in toric varieties.
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Curves

Zeta functions of elliptic curves

For X an elliptic curve over Fq, its zeta function has the form

1− aT + qT 2

(1− T )(1− qT )
, a = q + 1−#X (Fq), |a| ≤ 2

√
q.

Using the group structure, one can compute a in time O(q1/4). This is
optimal in practice for “reasonably big” q.

In cryptography, one cares about #X (Fq) where q is “unreasonably big”
(e.g., q ∼ 2256). In this case, the Schoof–Elkies–Atkin method, which
computes a (mod `) for various small ` by manipulating X [`], is
polynomial in log q and optimal in practice.

SEA amounts to working with mod-` étale cohomology. This generalizes in
theory to all curves (Pila), but has only been executed in genus 2
(Gaudry–Schost). It seems hard to extend to higher-dimensional varieties;
an isolated case is Edixhoven’s work on computing modular forms.
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Curves

L-functions of elliptic curves

For X an elliptic curve over a number field K , the conjecture of
Birch–Swinnerton-Dyer predicts that ords=1 LX ,1(s) equals r = rankZ X (K )
and that

lim
s→1

L
(r)
X ,1(s)

r !
=

V Reg(X (K )) |X(X )|
|X (K )tors|2

where V is a certain “easily” computable adelic volume, Reg is the
regulator for the canonical height pairing, and X(X ) is the (conjecturally
finite) Shafarevich–Tate group.

Analytic continuation of LX ,1(s) is known when K is totally real or
imaginary quadratic (Taylor et al). The first part of BSD is known when
K = Q and ords=1 LX ,1(s) ≤ 1 (Gross–Zagier, Kolyvagin); under some
technical hypothesis, the second part is also known (many authors).
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Curves

Zeta functions of general curves

For X a curve of genus g over Fq, its zeta function has the form

PX ,1(T )

(1− T )(1− qT )
, PX ,1(T ) = 1 + · · ·+ qgT 2g .

For “reasonable” q, g this is efficiently computable (K, Harvey, Tuitman, et
al).

For J the Jacobian of X , note that #J(Fq) = PX ,1(1). For small g , this is
also relevant for cryptography (but again in the case of “unreasonable” q).

Via the Chabauty–Kim method, such computations have applications to
finding rational points on curves over number field. For instance, the
Q-points of the split/nonsplit Cartan modular curve Xs(13) ∼= Xns(13) were
recently determined by Balakrishnan–Dogra–Müller–Tuitman–Vonk.
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Curves

L-functions of general curves

For X a curve over a number field K , there is an analogue of BSD about
which little is known. However, for hyperelliptic curves of genus ≤ 3 there
is a very efficient method of Harvey–Sutherland for computing LX ,1(s),
which can be used to gather evidence.

Assuming analytic continuation of LX ,1(s) (and some other L-functions),
the (normalized) Euler factors of LX ,1(s) converge in measure to a certain
group-theoretic distribution. For g = 1 this takes one of three values
depending on whether X has no CM, CM over K , or CM over a larger field
(Sato–Tate conjecture, now known).

For g = 2 there are 52 possible distributions (Fité–K–Rotger–Sutherland).
The problem for g = 3 is still mostly open, but twists of the Fermat and
Klein quartics have been analyzed (Fité–Lorenzo Garcia–Sutherland).
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K3 surfaces

Zeta functions of K3 surfaces

For X a K3 surface over Fq, its zeta function has the form

1
(1− T )(1− qT )(1− q2T )q−1QX ,2(qT )

, QX ,2(T ) = q + · · · ± qT 21.

The Picard number ρX (resp. the geometric Picard number ρ̃X ) counts
roots of (1− T )QX ,2(T ) equal to 1 (resp. to any root of unity). Note that
QX ,2(T ) is divisible by 1− T or 1 + T , so ρ̃X > 1.

Computing ζX by brute force is only viable for small q; for instance, with
no prior lower bound on ρX or ρ̃X , already q = 7 is difficult. In many cases
(e.g., for smooth quartics in P3) methods of p-adic cohomology can handle
much larger q.
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K3 surfaces

The inverse problem for zeta functions

Given all known constraints on QX ,2(T ), which such polynomials actually
occur for some X? Constraints include restrictions on roots, the Artin–Tate
formula (see next slide), and (for small q) the positivity conditions

#X (Fq) ≥ 0, #X (Fqmn) ≥ #X (Fqn) (m, n ≥ 1),

A result of Taelman–Ito (conditional for p ≤ 5) gives partial information: if
we consider only the transcendental part of QX ,2(T ) (omitting cyclotomic
factors), it can always be achieved after replacing Fq with an uncontrolled
finite extension (which replaces each root of the polynomial with a
corresponding power).

Is the uncontrolled finite extension really necessary? To shed light on this
question, K–Sutherland computed all candidates for QX ,2(T ) for F2, and
(by brute force) ζX (T ) for all smooth quartics in P3 over F2.
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K3 surfaces

Artin–Tate formula

The Tate conjecture is known for K3 surfaces over finite fields (many
authors). This makes the Artin–Tate formula unconditional:

lim
T→1

Q
(r−1)
X ,2 (T )

(r − 1)!
= |∆X | |Br(X )|

where ∆X is the determinant of the Néron–Severi lattice and Br(X ) is the
Brauer group. The latter is finite and its order is a square; the possibilities
for QX ,2(T ) are restricted both by this condition, and by the corresponding
condition over extensions of Fq (Elsenhans–Jahnel).

Over F2, there is a candidate for QX ,2(T ) which would imply ρX = 1,
|∆X | = 2× 463. I have no idea how to construct such an X !

On the other hand, every candidate for QX ,2(T ) over F2 which can only
occur for smooth quartics in P3 over F2 does occur!
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K3 surfaces

L-functions of K3 surfaces

For X a K3 surface over a number field K , conjecturally the leading term
of LX ,2(s) at s = 2 reflects the Picard number and some other arithmetic
(by conjectures of Beilinson, Bloch, Deligne).

If X is the Kummer surface of an abelian surface A, this is related not to
the BSD conjecture for A, but to a corresponding conjecture about the
symmetric square L-function (Bloch–Kato). This still involves |X(A)|.

One can study Sato–Tate distributions; this includes the case of abelian
surfaces via the Kummer construction, but otherwise little is known.

By comparing the L-functions of X and its base extensions, one gets
information about the kernel of Br(X )→ Br(XK ). This kernel can be used
to study Brauer–Manin obstructions to rational points; it is also believed to
obey a uniform boundedness conjecture analogous to torsion of elliptic
curves. (See Várilly-Alvarado’s AWS 2015 notes for more discussion.)

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 17 / 24



K3 surfaces

L-functions of K3 surfaces

For X a K3 surface over a number field K , conjecturally the leading term
of LX ,2(s) at s = 2 reflects the Picard number and some other arithmetic
(by conjectures of Beilinson, Bloch, Deligne).

If X is the Kummer surface of an abelian surface A, this is related not to
the BSD conjecture for A, but to a corresponding conjecture about the
symmetric square L-function (Bloch–Kato). This still involves |X(A)|.

One can study Sato–Tate distributions; this includes the case of abelian
surfaces via the Kummer construction, but otherwise little is known.

By comparing the L-functions of X and its base extensions, one gets
information about the kernel of Br(X )→ Br(XK ). This kernel can be used
to study Brauer–Manin obstructions to rational points; it is also believed to
obey a uniform boundedness conjecture analogous to torsion of elliptic
curves. (See Várilly-Alvarado’s AWS 2015 notes for more discussion.)

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 17 / 24



K3 surfaces

L-functions of K3 surfaces

For X a K3 surface over a number field K , conjecturally the leading term
of LX ,2(s) at s = 2 reflects the Picard number and some other arithmetic
(by conjectures of Beilinson, Bloch, Deligne).

If X is the Kummer surface of an abelian surface A, this is related not to
the BSD conjecture for A, but to a corresponding conjecture about the
symmetric square L-function (Bloch–Kato). This still involves |X(A)|.

One can study Sato–Tate distributions; this includes the case of abelian
surfaces via the Kummer construction, but otherwise little is known.

By comparing the L-functions of X and its base extensions, one gets
information about the kernel of Br(X )→ Br(XK ). This kernel can be used
to study Brauer–Manin obstructions to rational points; it is also believed to
obey a uniform boundedness conjecture analogous to torsion of elliptic
curves. (See Várilly-Alvarado’s AWS 2015 notes for more discussion.)

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 17 / 24



K3 surfaces

L-functions of K3 surfaces

For X a K3 surface over a number field K , conjecturally the leading term
of LX ,2(s) at s = 2 reflects the Picard number and some other arithmetic
(by conjectures of Beilinson, Bloch, Deligne).

If X is the Kummer surface of an abelian surface A, this is related not to
the BSD conjecture for A, but to a corresponding conjecture about the
symmetric square L-function (Bloch–Kato). This still involves |X(A)|.

One can study Sato–Tate distributions; this includes the case of abelian
surfaces via the Kummer construction, but otherwise little is known.

By comparing the L-functions of X and its base extensions, one gets
information about the kernel of Br(X )→ Br(XK ). This kernel can be used
to study Brauer–Manin obstructions to rational points; it is also believed to
obey a uniform boundedness conjecture analogous to torsion of elliptic
curves. (See Várilly-Alvarado’s AWS 2015 notes for more discussion.)

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 17 / 24



K3 surfaces

Jumping of Picard numbers

The Picard number (resp. geometric Picard number) does not decrease
under specialization from X to Xp, but may increase. If ρ̃X is odd then it
must increase!

Nonetheless, by combining information from two primes of good reduction,
one can often use zeta function information to pin down ρ̃X . E.g., van
Luijk gave an explicit example where ρ̃X = 1 is established using brute
force computations modulo 2 and 3.

For fixed X , one can study frequency of Picard number jumping; some
experiments have been done (Costa–Tschinkel). For ρX � 0, this is related
to supersingular reductions of abelian varieties, for which some infinitude
results are conjectured (Lang–Trotter) and/or known (Elkies, Charles).

A certain infinitude statement for Picard number jumping would imply that
every K3 surface over C contains infinitely many rational curves
(Bogomolov et al, Li–Liedtke).
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Calabi–Yau (CY) threefolds

Zeta functions of CY threefolds

For X a CY threefold over Fq, its zeta function has the form

PX ,3(T )

(1− T )(1− qT )(1− q2T )(1− q3T )
, PX ,3(T ) ∈ 1 + TZ[T ].

Note that there is no a priori bound on deg(PX ,3).

In many cases of interest, PX ,3(T ) will have a known factor of the form
QY ,1(qT ) where Y is a curve or abelian variety. For example, if X is a
smooth quintic in P4 then deg(PX ,3) = 104, but if X belongs to the Dwork
pencil

x5
0 + · · ·+ x5

4 + λx0 · · · x4 = 0

then PX ,3(T ) has a known factor of degree 100.

Known factors can usually be explained by geometric considerations, e.g.,
by comparing toric embeddings.
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Calabi–Yau (CY) threefolds

Comparison of Galois representations (e.g., modularity)

In some cases, the Galois representation associated to two different motives
can be identified up to semisimplification, implying an equality of
L-functions. This is a finite1 computation: once one has enough matching
local factors, an argument of Faltings–Serre kicks in.

This can be used to establish comparisons of L-functions between various
varieties and modular forms (i.e., modularity). For CY threefolds, this has
been done by van Geemen–Nygaard, Dieulefait–Manoharmayum, Verrill,
Ahlgren–Ono, Saito–Yui, Livné–Yui, Meyer, Lee, Hulek-Verrill, Schütt,
Cynk–Hulek, Gouvêa–Yui, Dieulefait–Pacetti–Schütt, etc.

This is also feasible in higher dimensions; see Cynk–Hulek.

1This statement does not include a runtime bound. A weak bound can be obtained
using analytic number theory, but in practice very few local factors are needed.
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Calabi–Yau (CY) threefolds

Arithmetic aspects of mirror symmetry

In certain cases, pairs of CY threefolds occurring in mirror families have
related factors in their L-functions. This was observed in the Dwork pencil
and its mirror by Candelas–de la Ossa–Rodriguez Villegas and more
generally by Gährs, Miyatami, and
Doran–Kelly–Salerno–Sperber–Voight–Whitcher. (This is not exclusive to
dimension 3; some of the examples are K3 surfaces.)

Is there something more general going on here? Would experimental data
about L-functions of CY (or other) varieties help identify the right
framework?
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Afterword

Hypergeometric motives

A family of motives indexed by a rational parameter t is hypergeometric if
its associated Picard–Fuchs equation is hypergeometric; in particular, it has
singularities only at t = 0, 1,∞. There are many Hodge vectors that can
occur, which touch many interesting cases.

One can compute zeta and L-functions of hypergeometric motives
efficiently using a p-adic version of the finite hypergeometric trace formula
(Greene, Katz, Cohen–Rodriguez Villegas–Watkins) or by computing the
Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where L-functions can be computed
even when p-adic cohomology cannot be computed directly (e.g., most
cases of dimension > 4). I would expect similar considerations to apply to
GKZ-hypergeometric families (indexed by multiple parameters), which
would provide even more examples.

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 24 / 24



Afterword

Hypergeometric motives

A family of motives indexed by a rational parameter t is hypergeometric if
its associated Picard–Fuchs equation is hypergeometric; in particular, it has
singularities only at t = 0, 1,∞. There are many Hodge vectors that can
occur, which touch many interesting cases.

One can compute zeta and L-functions of hypergeometric motives
efficiently using a p-adic version of the finite hypergeometric trace formula
(Greene, Katz, Cohen–Rodriguez Villegas–Watkins) or by computing the
Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where L-functions can be computed
even when p-adic cohomology cannot be computed directly (e.g., most
cases of dimension > 4). I would expect similar considerations to apply to
GKZ-hypergeometric families (indexed by multiple parameters), which
would provide even more examples.

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 24 / 24



Afterword

Hypergeometric motives

A family of motives indexed by a rational parameter t is hypergeometric if
its associated Picard–Fuchs equation is hypergeometric; in particular, it has
singularities only at t = 0, 1,∞. There are many Hodge vectors that can
occur, which touch many interesting cases.

One can compute zeta and L-functions of hypergeometric motives
efficiently using a p-adic version of the finite hypergeometric trace formula
(Greene, Katz, Cohen–Rodriguez Villegas–Watkins) or by computing the
Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where L-functions can be computed
even when p-adic cohomology cannot be computed directly (e.g., most
cases of dimension > 4). I would expect similar considerations to apply to
GKZ-hypergeometric families (indexed by multiple parameters), which
would provide even more examples.

Kiran S. Kedlaya (UCSD) Zeta functions of varieties ICERM, May 16, 2018 24 / 24


	Overview
	Curves
	K3 surfaces
	Calabi–Yau (CY) threefolds
	Afterword

