## Zeta functions of varieties: tools and applications

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego
kedlaya@ucsd.edu
http://kskedlaya.org/slides/
Birational Geometry and Arithmetic
Institute for Computational and Experimental Research in Mathematics Providence, May 16, 2018

Supported by NSF (grant DMS-1501214), UCSD (Warschawski chair).

## Contents

(1) Overview
(2) Curves
(3) K3 surfaces
(4) Calabi-Yau (CY) threefolds
(5) Afterword

## Contents

## (1) Overview

(3) K3 surfaces
4) Calabi-Yau (CY) threefolds
(5) Afterword

## Zeta functions

For $X$ a smooth proper variety over a finite field $\mathbb{F}_{q}$, its zeta function is

$$
\begin{aligned}
\zeta_{X}(s) & =\prod_{x \in X^{\circ}}\left(1-|\kappa(x)|^{-s}\right)^{-1} \quad X^{\circ}=\{\text { closed points of } X\} \\
& =\exp \left(\sum_{n=1}^{\infty} \# X\left(\mathbb{F}_{q^{n}}\right) \frac{q^{-n s}}{n}\right)
\end{aligned}
$$

viewed as an absolutely convergent Dirichlet series for $\operatorname{Re}(s)>d=\operatorname{dim}(X)$ which represents a rational function of $T=q^{-s}$. It factors as

$$
\frac{P_{X, 1}(T) \cdots P_{X, 2 d-1}(T)}{P_{X, 0}(T) \cdots P_{X, 2 d}(T)}
$$

where $P_{X, i}(T) \in 1+T \mathbb{Z}[T]$ has all $\mathbb{C}$-roots on the circle $|T|=q^{-i / 2}$. If $X$ lifts to characteristic $0, \operatorname{deg}\left(P_{X, i}\right)$ is the $i$-th Betti number of any lift.

## L-functions

For $X$ a smooth proper variety over a number field $K$, its (incomplete) $i$-th $L$-function is

$$
L_{X, i}(s)=\prod_{\mathfrak{p}} P_{X_{\mathfrak{p}}, i}(s)^{-1}
$$

where $\mathfrak{p}$ runs over prime ideals of the ring of integers of $K$ at which $X$ has good reduction, and $X_{\mathfrak{p}}$ is the special fiber of the smooth model of $X$ at $\mathfrak{p}$. For best results, this product should be completed with additional factors corresponding to the remaining (finite and infinite) places of $K$; the result conjecturally admits a meromorphic extension and functional equation (known in a few cases), and an analogue of the Riemann hypothesis (known in no cases).
In some cases, $L_{X, i}(s)$ factors as a finite product of functions with good properties, corresponding to a decomposition of $X$ into motives.

## L-functions

For $X$ a smooth proper variety over a number field $K$, its (incomplete) $i$-th $L$-function is

$$
L_{X, i}(s)=\prod_{\mathfrak{p}} P_{X_{\mathfrak{p}}, i}(s)^{-1}
$$

where $\mathfrak{p}$ runs over prime ideals of the ring of integers of $K$ at which $X$ has good reduction, and $X_{p}$ is the special fiber of the smooth model of $X$ at $\mathfrak{p}$.
For best results, this product should be completed with additional factors corresponding to the remaining (finite and infinite) places of $K$; the result conjecturally admits a meromorphic extension and functional equation (known in a few cases), and an analogue of the Riemann hypothesis (known in no cases).
In some cases, $L_{X, i}(s)$ factors as a finite product of functions with good properties, corresponding to a decomposition of $X$ into motives.

## L-functions

For $X$ a smooth proper variety over a number field $K$, its (incomplete) $i$-th $L$-function is

$$
L_{X, i}(s)=\prod_{\mathfrak{p}} P_{X_{p}, i}(s)^{-1}
$$

where $\mathfrak{p}$ runs over prime ideals of the ring of integers of $K$ at which $X$ has good reduction, and $X_{p}$ is the special fiber of the smooth model of $X$ at $\mathfrak{p}$.
For best results, this product should be completed with additional factors corresponding to the remaining (finite and infinite) places of $K$; the result conjecturally admits a meromorphic extension and functional equation (known in a few cases), and an analogue of the Riemann hypothesis (known in no cases).
In some cases, $L_{X, i}(s)$ factors as a finite product of functions with good properties, corresponding to a decomposition of $X$ into motives.

## Computations of zeta and L-functions

The goal of this talk is to survey some aspects of algebraic/arithmetic geometry where zeta functions and $L$-functions, and numerical computations of them, play an important role. (We generally assume that varieties are being specified by explicit equations.)

In principle, given (a bound on) $\operatorname{deg}\left(P_{X, i}\right)$, one can compute $\zeta_{X}(s)$ by brute force by enumerating $X\left(\mathbb{F}_{q^{n}}\right)$ for $n=1,2, \ldots$. This is impractical in all but a few cases.

A more robust approach is to interpret $P_{X, i}(T)=\operatorname{det}\left(1-T F, V_{i}\right)$ where $V_{i}$ is a certain finite-dimensional vector space over a field of characteristic 0 and $F: V_{i} \rightarrow V_{i}$ is a certain automorphism. E.g., one may take $V_{i}=H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\ell}\right)$ for $\ell \neq \operatorname{char}\left(\mathbb{F}_{q}\right)$ prime and $F$ to be geometric Frobenius. However, étale cohomology is not defined in a particularly computable manner, so this only helps in a few cases.

## Computations of zeta and L-functions

The goal of this talk is to survey some aspects of algebraic/arithmetic geometry where zeta functions and $L$-functions, and numerical computations of them, play an important role. (We generally assume that varieties are being specified by explicit equations.)

In principle, given (a bound on) $\operatorname{deg}\left(P_{X, i}\right)$, one can compute $\zeta_{X}(s)$ by brute force by enumerating $X\left(\mathbb{F}_{q^{n}}\right)$ for $n=1,2, \ldots$. This is impractical in all but a few cases.

A more robust approach is to interpret $P_{X, i}(T)=\operatorname{det}\left(1-T F, V_{i}\right)$ where $V_{i}$ is a certain finite-dimensional vector space over a field of characteristic 0 and $F: V_{i} \rightarrow V_{i}$ is a certain automorphism. E.g., one may take $V_{i}=H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\ell}\right)$ for $\ell \neq \operatorname{char}\left(\mathbb{F}_{q}\right)$ prime and $F$ to be geometric Frobenius. However, étale cohomology is not defined in a particularly computable manner, so this only helps in a few cases.

## Computations of zeta and L-functions

The goal of this talk is to survey some aspects of algebraic/arithmetic geometry where zeta functions and $L$-functions, and numerical computations of them, play an important role. (We generally assume that varieties are being specified by explicit equations.)

In principle, given (a bound on) $\operatorname{deg}\left(P_{X, i}\right)$, one can compute $\zeta_{X}(s)$ by brute force by enumerating $X\left(\mathbb{F}_{q^{n}}\right)$ for $n=1,2, \ldots$. This is impractical in all but a few cases.

A more robust approach is to interpret $P_{X, i}(T)=\operatorname{det}\left(1-T F, V_{i}\right)$ where $V_{i}$ is a certain finite-dimensional vector space over a field of characteristic 0 and $F: V_{i} \rightarrow V_{i}$ is a certain automorphism. E.g., one may take $V_{i}=H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\ell}\right)$ for $\ell \neq \operatorname{char}\left(\mathbb{F}_{q}\right)$ prime and $F$ to be geometric Frobenius. However, étale cohomology is not defined in a particularly computable manner, so this only helps in a few cases.

## Computations using $p$-adic cohomology

For $\ell=p=\operatorname{char}\left(\mathbb{F}_{q}\right)$, étale cohomology with $\mathbb{Q}_{p}$-coefficients does not satisfy the Lefschetz trace formula for Frobenius. Instead, we use crystalline cohomology with $\mathbb{Q}_{q}$-coefficients; this is not defined in a computable manner either, but it is equivalent to other constructions which are.

Notably, if $X$ is smooth proper over a number field $K$ and $X_{\mathfrak{p}}$ is a reduction, then crystalline cohomology with $K_{\mathfrak{p}}$-coefficients can be identified, as a bare vector space, with algebraic de Rham cohomology; in particular, this space is "independent of $\mathfrak{p}$." A construction of Monsky-Washnitzer describes the Frobenius action in terms of some convergent $p$-adic power series.

This can be made effective in a broad range of cases. The subsequent talk by Edgar Costa will treat in detail the case of (generic) smooth hypersurfaces in toric varieties.

## Computations using $p$-adic cohomology

For $\ell=p=\operatorname{char}\left(\mathbb{F}_{q}\right)$, étale cohomology with $\mathbb{Q}_{p}$-coefficients does not satisfy the Lefschetz trace formula for Frobenius. Instead, we use crystalline cohomology with $\mathbb{Q}_{q}$-coefficients; this is not defined in a computable manner either, but it is equivalent to other constructions which are.

Notably, if $X$ is smooth proper over a number field $K$ and $X_{\mathfrak{p}}$ is a reduction, then crystalline cohomology with $K_{\mathfrak{p}}$-coefficients can be identified, as a bare vector space, with algebraic de Rham cohomology; in particular, this space is "independent of $\mathfrak{p}$." A construction of Monsky-Washnitzer describes the Frobenius action in terms of some convergent $p$-adic power series.

This can be made effective in a broad range of cases. The subsequent talk by Edgar Costa will treat in detail the case of (generic) smooth hypersurfaces in toric varieties.

## Computations using $p$-adic cohomology

For $\ell=p=\operatorname{char}\left(\mathbb{F}_{q}\right)$, étale cohomology with $\mathbb{Q}_{p}$-coefficients does not satisfy the Lefschetz trace formula for Frobenius. Instead, we use crystalline cohomology with $\mathbb{Q}_{q}$-coefficients; this is not defined in a computable manner either, but it is equivalent to other constructions which are.

Notably, if $X$ is smooth proper over a number field $K$ and $X_{\mathfrak{p}}$ is a reduction, then crystalline cohomology with $K_{\mathfrak{p}}$-coefficients can be identified, as a bare vector space, with algebraic de Rham cohomology; in particular, this space is "independent of $\mathfrak{p}$." A construction of Monsky-Washnitzer describes the Frobenius action in terms of some convergent $p$-adic power series.
This can be made effective in a broad range of cases. The subsequent talk by Edgar Costa will treat in detail the case of (generic) smooth hypersurfaces in toric varieties.

## Contents

## (1) Overview

## (3) K3 surfaces

## (4) Calabi-Yau (CY) threefolds

## (5) Afterword

## Zeta functions of elliptic curves

For $X$ an elliptic curve over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1-a T+q T^{2}}{(1-T)(1-q T)}, \quad a=q+1-\# X\left(\mathbb{F}_{q}\right), \quad|a| \leq 2 \sqrt{q} .
$$

Using the group structure, one can compute a in time $O\left(q^{1 / 4}\right)$. This is optimal in practice for "reasonably big" $q$.

In cryptography, one cares about $\# X\left(\mathbb{F}_{q}\right)$ where $q$ is "unreasonably big" (e.g., $q \sim 2^{256}$ ). In this case, the Schoof-Elkies-Atkin method, which computes a $(\bmod \ell)$ for various small $\ell$ by manipulating $X[\ell]$, is polynomial in $\log q$ and optimal in practice.

SEA amounts to working with mod- $\ell$ étale cohomology. This generalizes in theory to all curves (Pila), but has only been executed in genus 2 (Gaudry-Schost). It seems hard to extend to higher-dimensional varieties; an isolated case is Edixhoven's work on computing modular forms.

## Zeta functions of elliptic curves

For $X$ an elliptic curve over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1-a T+q T^{2}}{(1-T)(1-q T)}, \quad a=q+1-\# X\left(\mathbb{F}_{q}\right), \quad|a| \leq 2 \sqrt{q} .
$$

Using the group structure, one can compute a in time $O\left(q^{1 / 4}\right)$. This is optimal in practice for "reasonably big" $q$.

In cryptography, one cares about $\# X\left(\mathbb{F}_{q}\right)$ where $q$ is "unreasonably big" (e.g., $q \sim 2^{256}$ ). In this case, the Schoof-Elkies-Atkin method, which computes a $(\bmod \ell)$ for various small $\ell$ by manipulating $X[\ell]$, is polynomial in $\log q$ and optimal in practice.

SEA amounts to working with mod- $\ell$ étale cohomology. This generalizes in theory to all curves (Pila), but has only been executed in genus 2 (Gaudry-Schost). It seems hard to extend to higher-dimensional varieties; an isolated case is Edixhoven's work on computing modular forms.

## Zeta functions of elliptic curves

For $X$ an elliptic curve over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1-a T+q T^{2}}{(1-T)(1-q T)}, \quad a=q+1-\# X\left(\mathbb{F}_{q}\right), \quad|a| \leq 2 \sqrt{q} .
$$

Using the group structure, one can compute a in time $O\left(q^{1 / 4}\right)$. This is optimal in practice for "reasonably big" $q$.

In cryptography, one cares about $\# X\left(\mathbb{F}_{q}\right)$ where $q$ is "unreasonably big" (e.g., $q \sim 2^{256}$ ). In this case, the Schoof-Elkies-Atkin method, which computes a $(\bmod \ell)$ for various small $\ell$ by manipulating $X[\ell]$, is polynomial in $\log q$ and optimal in practice.

SEA amounts to working with mod- $\ell$ étale cohomology. This generalizes in theory to all curves (Pila), but has only been executed in genus 2 (Gaudry-Schost). It seems hard to extend to higher-dimensional varieties; an isolated case is Edixhoven's work on computing modular forms.

## Zeta functions of elliptic curves

For $X$ an elliptic curve over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1-a T+q T^{2}}{(1-T)(1-q T)}, \quad a=q+1-\# X\left(\mathbb{F}_{q}\right), \quad|a| \leq 2 \sqrt{q}
$$

Using the group structure, one can compute a in time $O\left(q^{1 / 4}\right)$. This is optimal in practice for "reasonably big" $q$.

In cryptography, one cares about $\# X\left(\mathbb{F}_{q}\right)$ where $q$ is "unreasonably big" (e.g., $q \sim 2^{256}$ ). In this case, the Schoof-Elkies-Atkin method, which computes a $(\bmod \ell)$ for various small $\ell$ by manipulating $X[\ell]$, is polynomial in $\log q$ and optimal in practice.

SEA amounts to working with mod- $\ell$ étale cohomology. This generalizes in theory to all curves (Pila), but has only been executed in genus 2 (Gaudry-Schost). It seems hard to extend to higher-dimensional varieties; an isolated case is Edixhoven's work on computing modular forms.

## L-functions of elliptic curves

For $X$ an elliptic curve over a number field $K$, the conjecture of Birch-Swinnerton-Dyer predicts that ord ${ }_{s=1} L_{X, 1}(s)$ equals $r=\operatorname{rank}_{\mathbb{Z}} X(K)$ and that

$$
\lim _{s \rightarrow 1} \frac{L_{X, 1}^{(r)}(s)}{r!}=\frac{V \operatorname{Reg}(X(K))|\amalg(X)|}{\left|X(K)_{\text {tors }}\right|^{2}}
$$

where $V$ is a certain "easily" computable adelic volume, Reg is the regulator for the canonical height pairing, and $\amalg(X)$ is the (conjecturally finite) Shafarevich-Tate group.

Analytic continuation of $L_{X, 1}(s)$ is known when $K$ is totally real or imaginary quadratic (Taylor et al). The first part of BSD is known when $K=\mathbb{Q}$ and $\operatorname{ord}_{s=1} L_{X, 1}(s) \leq 1$ (Gross-Zagier, Kolyvagin); under some technical hypothesis, the second part is also known (many authors).

## L-functions of elliptic curves

For $X$ an elliptic curve over a number field $K$, the conjecture of Birch-Swinnerton-Dyer predicts that $\operatorname{ord}_{s=1} L_{X, 1}(s)$ equals $r=\operatorname{rank}_{\mathbb{Z}} X(K)$ and that

$$
\lim _{s \rightarrow 1} \frac{L_{X, 1}^{(r)}(s)}{r!}=\frac{V \operatorname{Reg}(X(K))|W(X)|}{\left|X(K)_{\text {tors }}\right|^{2}}
$$

where $V$ is a certain "easily" computable adelic volume, Reg is the regulator for the canonical height pairing, and $\amalg(X)$ is the (conjecturally finite) Shafarevich-Tate group.

Analytic continuation of $L_{X, 1}(s)$ is known when $K$ is totally real or imaginary quadratic (Taylor et al). The first part of BSD is known when $K=\mathbb{Q}$ and $\operatorname{ord}_{s=1} L_{X, 1}(s) \leq 1$ (Gross-Zagier, Kolyvagin); under some technical hypothesis, the second part is also known (many authors).

## Zeta functions of general curves

For $X$ a curve of genus $g$ over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 1}(T)}{(1-T)(1-q T)}, \quad P_{X, 1}(T)=1+\cdots+q^{g} T^{2 g} .
$$

For "reasonable" $q, g$ this is efficiently computable (K, Harvey, Tuitman, et al).

For $J$ the Jacobian of $X$, note that $\# J\left(\mathbb{F}_{q}\right)=P_{X, 1}(1)$. For small $g$, this is also relevant for cryptography (but again in the case of "unreasonable" $q$ ).

Via the Chabauty-Kim method, such computations have applications to finding rational points on curves over number field. For instance, the $\mathbb{Q}$-points of the split/nonsplit Cartan modular curve $X_{\mathrm{s}}(13) \cong X_{\text {ns }}(13)$ were recently determined by Balakrishnan-Dogra-Müller-Tuitman-Vonk.

## Zeta functions of general curves

For $X$ a curve of genus $g$ over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 1}(T)}{(1-T)(1-q T)}, \quad P_{X, 1}(T)=1+\cdots+q^{g} T^{2 g} .
$$

For "reasonable" $q, g$ this is efficiently computable (K, Harvey, Tuitman, et al).

For $J$ the Jacobian of $X$, note that $\# J\left(\mathbb{F}_{q}\right)=P_{X, 1}(1)$. For small $g$, this is also relevant for cryptography (but again in the case of "unreasonable" $q$ ). Via the Chabauty-Kim method, such computations have applications to finding rational points on curves over number field. For instance, the $\mathbb{Q}$-points of the split/nonsplit Cartan modular curve $X_{\mathrm{s}}(13) \cong X_{\text {ns }}(13)$ were recently determined by Balakrishnan-Dogra-Müller-Tuitman-Vonk.

## Zeta functions of general curves

For $X$ a curve of genus $g$ over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 1}(T)}{(1-T)(1-q T)}, \quad P_{X, 1}(T)=1+\cdots+q^{g} T^{2 g} .
$$

For "reasonable" $q, g$ this is efficiently computable (K, Harvey, Tuitman, et al).

For $J$ the Jacobian of $X$, note that $\# J\left(\mathbb{F}_{q}\right)=P_{X, 1}(1)$. For small $g$, this is also relevant for cryptography (but again in the case of "unreasonable" $q$ ). Via the Chabauty-Kim method, such computations have applications to finding rational points on curves over number field. For instance, the $\mathbb{Q}$-points of the split/nonsplit Cartan modular curve $X_{\mathrm{s}}(13) \cong X_{\mathrm{ns}}(13)$ were recently determined by Balakrishnan-Dogra-Müller-Tuitman-Vonk.

## L-functions of general curves

For $X$ a curve over a number field $K$, there is an analogue of BSD about which little is known. However, for hyperelliptic curves of genus $\leq 3$ there is a very efficient method of Harvey-Sutherland for computing $L_{x, 1}(s)$, which can be used to gather evidence.

Assuming analytic continuation of $L_{X, 1}(s)$ (and some other $L$-functions), the (normalized) Euler factors of $L_{X, 1}(s)$ converge in measure to a certain group-theoretic distribution. For $g=1$ this takes one of three values depending on whether $X$ has no CM, CM over $K$, or CM over a larger field (Sato-Tate conjecture, now known).

For $g=2$ there are 52 possible distributions (Fité-K-Rotger-Sutherland). The problem for $g=3$ is still mostly open, but twists of the Fermat and Klein quartics have been analyzed (Fité-Lorenzo Garcia-Sutherland).

## L-functions of general curves

For $X$ a curve over a number field $K$, there is an analogue of BSD about which little is known. However, for hyperelliptic curves of genus $\leq 3$ there is a very efficient method of Harvey-Sutherland for computing $L_{X, 1}(s)$, which can be used to gather evidence.

Assuming analytic continuation of $L_{X, 1}(s)$ (and some other $L$-functions), the (normalized) Euler factors of $L_{X, 1}(s)$ converge in measure to a certain group-theoretic distribution. For $g=1$ this takes one of three values depending on whether $X$ has no CM, CM over $K$, or CM over a larger field (Sato-Tate conjecture, now known).

For $g=2$ there are 52 possible distributions (Fité-K-Rotger-Sutherland). The problem for $g=3$ is still mostly open, but twists of the Fermat and Klein quartics have been analyzed (Fité-Lorenzo Garcia-Sutherland).

## L-functions of general curves

For $X$ a curve over a number field $K$, there is an analogue of BSD about which little is known. However, for hyperelliptic curves of genus $\leq 3$ there is a very efficient method of Harvey-Sutherland for computing $L_{X, 1}(s)$, which can be used to gather evidence.

Assuming analytic continuation of $L_{X, 1}(s)$ (and some other $L$-functions), the (normalized) Euler factors of $L_{X, 1}(s)$ converge in measure to a certain group-theoretic distribution. For $g=1$ this takes one of three values depending on whether $X$ has no CM, CM over $K$, or CM over a larger field (Sato-Tate conjecture, now known).

For $g=2$ there are 52 possible distributions (Fité-K-Rotger-Sutherland). The problem for $g=3$ is still mostly open, but twists of the Fermat and Klein quartics have been analyzed (Fité-Lorenzo Garcia-Sutherland).

## Contents

(1) Overview
(2) Curves
(3) K3 surfaces
(4) Calabi-Yau (CY) threefolds
(5) Afterword

## Zeta functions of K3 surfaces

For $X$ a K 3 surface over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1}{(1-T)(1-q T)\left(1-q^{2} T\right) q^{-1} Q_{X, 2}(q T)}, \quad Q_{X, 2}(T)=q+\cdots \pm q T^{21}
$$

The Picard number $\rho_{X}$ (resp. the geometric Picard number $\tilde{\rho}_{X}$ ) counts roots of $(1-T) Q_{X, 2}(T)$ equal to 1 (resp. to any root of unity). Note that $Q_{X, 2}(T)$ is divisible by $1-T$ or $1+T$, so $\tilde{\rho}_{X}>1$.

Computing $\zeta_{X}$ by brute force is only viable for small $q$; for instance, with no prior lower bound on $\rho_{X}$ or $\tilde{\rho}_{X}$, already $q=7$ is difficult. In many cases (e.g., for smooth quartics in $\mathrm{P}^{3}$ ) methods of $p$-adic cohomology can handle much larger $q$.

## Zeta functions of K3 surfaces

For $X$ a K 3 surface over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{1}{(1-T)(1-q T)\left(1-q^{2} T\right) q^{-1} Q_{X, 2}(q T)}, \quad Q_{X, 2}(T)=q+\cdots \pm q T^{21}
$$

The Picard number $\rho_{X}$ (resp. the geometric Picard number $\tilde{\rho}_{X}$ ) counts roots of $(1-T) Q_{X, 2}(T)$ equal to 1 (resp. to any root of unity). Note that $Q_{X, 2}(T)$ is divisible by $1-T$ or $1+T$, so $\tilde{\rho}_{X}>1$.

Computing $\zeta_{X}$ by brute force is only viable for small $q$; for instance, with no prior lower bound on $\rho_{X}$ or $\tilde{\rho}_{X}$, already $q=7$ is difficult. In many cases (e.g., for smooth quartics in $\mathrm{P}^{3}$ ) methods of $p$-adic cohomology can handle much larger $q$.

The inverse problem for zeta functions

Given all known constraints on $Q_{X, 2}(T)$, which such polynomials actually occur for some $X$ ? Constraints include restrictions on roots, the Artin-Tate formula (see next slide), and (for small $q$ ) the positivity conditions

$$
\# X\left(\mathbb{F}_{q}\right) \geq 0, \quad \# X\left(\mathbb{F}_{q^{m n}}\right) \geq \# X\left(\mathbb{F}_{q^{n}}\right) \quad(m, n \geq 1)
$$

A result of Taelman-Ito (conditional for $p \leq 5$ ) gives partial information: if we consider only the transcendental part of $Q_{X, 2}(T)$ (omitting cyclotomic factors), it can always be achieved after replacing $\mathbb{F}_{q}$ with an uncontrolled finite extension (which replaces each root of the polynomial with a corresponding power).

Is the uncontrolled finite extension really necessary? To shed light on this question, K -Sutherland computed all candidates for $Q_{X, 2}(T)$ for $\mathbb{F}_{2}$, and (by brute force) $\zeta_{x}(T)$ for all smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$.

## The inverse problem for zeta functions

Given all known constraints on $Q_{X, 2}(T)$, which such polynomials actually occur for some $X$ ? Constraints include restrictions on roots, the Artin-Tate formula (see next slide), and (for small $q$ ) the positivity conditions

$$
\# X\left(\mathbb{F}_{q}\right) \geq 0, \quad \# X\left(\mathbb{F}_{q^{m n}}\right) \geq \# X\left(\mathbb{F}_{q^{n}}\right) \quad(m, n \geq 1)
$$

A result of Taelman-Ito (conditional for $p \leq 5$ ) gives partial information: if we consider only the transcendental part of $Q_{X, 2}(T)$ (omitting cyclotomic factors), it can always be achieved after replacing $\mathbb{F}_{q}$ with an uncontrolled finite extension (which replaces each root of the polynomial with a corresponding power).

Is the uncontrolled finite extension really necessary? To shed light on this question, K -Sutherland computed all candidates for $Q_{X, 2}(T)$ for $\mathbb{F}_{2}$, and (by brute force) $\zeta_{x}(T)$ for all smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$.

## The inverse problem for zeta functions

Given all known constraints on $Q_{X, 2}(T)$, which such polynomials actually occur for some $X$ ? Constraints include restrictions on roots, the Artin-Tate formula (see next slide), and (for small $q$ ) the positivity conditions

$$
\# X\left(\mathbb{F}_{q}\right) \geq 0, \quad \# X\left(\mathbb{F}_{q^{m n}}\right) \geq \# X\left(\mathbb{F}_{q^{n}}\right) \quad(m, n \geq 1)
$$

A result of Taelman-Ito (conditional for $p \leq 5$ ) gives partial information: if we consider only the transcendental part of $Q_{X, 2}(T)$ (omitting cyclotomic factors), it can always be achieved after replacing $\mathbb{F}_{q}$ with an uncontrolled finite extension (which replaces each root of the polynomial with a corresponding power).

Is the uncontrolled finite extension really necessary? To shed light on this question, K -Sutherland computed all candidates for $Q_{X, 2}(T)$ for $\mathbb{F}_{2}$, and (by brute force) $\zeta_{x}(T)$ for all smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$.

## Artin-Tate formula

The Tate conjecture is known for K3 surfaces over finite fields (many authors). This makes the Artin-Tate formula unconditional:

$$
\lim _{T \rightarrow 1} \frac{Q_{X, 2}^{(r-1)}(T)}{(r-1)!}=\left|\Delta_{X}\right||\operatorname{Br}(X)|
$$

where $\Delta_{X}$ is the determinant of the Néron-Severi lattice and $\operatorname{Br}(X)$ is the Brauer group. The latter is finite and its order is a square; the possibilities for $Q_{X, 2}(T)$ are restricted both by this condition, and by the corresponding condition over extensions of $\mathbb{F}_{q}$ (Elsenhans-Jahnel).

Over $\mathbb{F}_{2}$, there is a candidate for $Q_{X, 2}(T)$ which would imply $\rho_{X}=1$, $\left|\Delta_{X}\right|=2 \times 463$. I have no idea how to construct such an $X$ !

On the other hand, every candidate for $Q_{X, 2}(T)$ over $\mathbb{F}_{2}$ which can only occur for smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$ does occur!

## Artin-Tate formula

The Tate conjecture is known for K3 surfaces over finite fields (many authors). This makes the Artin-Tate formula unconditional:

$$
\lim _{T \rightarrow 1} \frac{Q_{X, 2}^{(r-1)}(T)}{(r-1)!}=\left|\Delta_{X}\right||\operatorname{Br}(X)|
$$

where $\Delta_{X}$ is the determinant of the Néron-Severi lattice and $\operatorname{Br}(X)$ is the Brauer group. The latter is finite and its order is a square; the possibilities for $Q_{X, 2}(T)$ are restricted both by this condition, and by the corresponding condition over extensions of $\mathbb{F}_{q}$ (Elsenhans-Jahnel).

Over $\mathbb{F}_{2}$, there is a candidate for $Q_{X, 2}(T)$ which would imply $\rho_{X}=1$, $\left|\Delta_{X}\right|=2 \times 463$. I have no idea how to construct such an $X$ !

On the other hand, every candidate for $Q_{x, 2}(T)$ over $\mathbb{F}_{2}$ which can only occur for smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$ does occur!

## Artin-Tate formula

The Tate conjecture is known for K3 surfaces over finite fields (many authors). This makes the Artin-Tate formula unconditional:

$$
\lim _{T \rightarrow 1} \frac{Q_{X, 2}^{(r-1)}(T)}{(r-1)!}=\left|\Delta_{X}\right||\operatorname{Br}(X)|
$$

where $\Delta_{X}$ is the determinant of the Néron-Severi lattice and $\operatorname{Br}(X)$ is the Brauer group. The latter is finite and its order is a square; the possibilities for $Q_{X, 2}(T)$ are restricted both by this condition, and by the corresponding condition over extensions of $\mathbb{F}_{q}$ (Elsenhans-Jahnel).

Over $\mathbb{F}_{2}$, there is a candidate for $Q_{X, 2}(T)$ which would imply $\rho_{X}=1$, $\left|\Delta_{X}\right|=2 \times 463$. I have no idea how to construct such an $X$ !

On the other hand, every candidate for $Q_{X, 2}(T)$ over $\mathbb{F}_{2}$ which can only occur for smooth quartics in $\mathrm{P}^{3}$ over $\mathbb{F}_{2}$ does occur!

## L-functions of K3 surfaces

For $X$ a K3 surface over a number field $K$, conjecturally the leading term of $L_{X, 2}(s)$ at $s=2$ reflects the Picard number and some other arithmetic (by conjectures of Beilinson, Bloch, Deligne).

If $X$ is the Kummer surface of an abelian surface $A$, this is related not to the BSD conjecture for $A$, but to a corresponding conjecture about the symmetric square L-function (Bloch-Kato). This still involves $|\amalg(A)|$.

One can study Sato-Tate distributions; this includes the case of abelian surfaces via the Kummer construction, but otherwise little is known.

By comparing the $L$-functions of $X$ and its base extensions, one gets information about the kernel of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{\bar{K}}\right)$. This kernel can be used to study Brauer-Manin obstructions to rational points; it is also believed to obey a uniform boundedness conjecture analogous to torsion of elliptic curves. (See Várilly-Alvarado's AWS 2015 notes for more discussion.)

## L-functions of K3 surfaces

For $X$ a K3 surface over a number field $K$, conjecturally the leading term of $L_{X, 2}(s)$ at $s=2$ reflects the Picard number and some other arithmetic (by conjectures of Beilinson, Bloch, Deligne).

If $X$ is the Kummer surface of an abelian surface $A$, this is related not to the BSD conjecture for $A$, but to a corresponding conjecture about the symmetric square $L$-function (Bloch-Kato). This still involves $|Ш(A)|$.

One can study Sato-Tate distributions; this includes the case of abelian surfaces via the Kummer construction, but otherwise little is known.

By comparing the $L$-functions of $X$ and its base extensions, one gets information about the kernel of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{\bar{K}}\right)$. This kernel can be used to study Brauer-Manin obstructions to rational points; it is also believed to obey a uniform boundedness conjecture analogous to torsion of elliptic curves. (See Várilly-Alvarado's AWS 2015 notes for more discussion.)

## L-functions of K3 surfaces

For $X$ a K3 surface over a number field $K$, conjecturally the leading term of $L_{X, 2}(s)$ at $s=2$ reflects the Picard number and some other arithmetic (by conjectures of Beilinson, Bloch, Deligne).

If $X$ is the Kummer surface of an abelian surface $A$, this is related not to the BSD conjecture for $A$, but to a corresponding conjecture about the symmetric square $L$-function (Bloch-Kato). This still involves $|\amalg(A)|$.

One can study Sato-Tate distributions; this includes the case of abelian surfaces via the Kummer construction, but otherwise little is known.

By comparing the $L$-functions of $X$ and its base extensions, one gets information about the kernel of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{\bar{K}}\right)$. This kernel can be used to study Brauer-Manin obstructions to rational points; it is also believed to obey a uniform boundedness conjecture analogous to torsion of elliptic curves. (See Várilly-Alvarado's AWS 2015 notes for more discussion.)

## L-functions of K3 surfaces

For $X$ a K3 surface over a number field $K$, conjecturally the leading term of $L_{X, 2}(s)$ at $s=2$ reflects the Picard number and some other arithmetic (by conjectures of Beilinson, Bloch, Deligne).
If $X$ is the Kummer surface of an abelian surface $A$, this is related not to the BSD conjecture for $A$, but to a corresponding conjecture about the symmetric square $L$-function (Bloch-Kato). This still involves $|\amalg(A)|$.

One can study Sato-Tate distributions; this includes the case of abelian surfaces via the Kummer construction, but otherwise little is known.

By comparing the $L$-functions of $X$ and its base extensions, one gets information about the kernel of $\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{\bar{K}}\right)$. This kernel can be used to study Brauer-Manin obstructions to rational points; it is also believed to obey a uniform boundedness conjecture analogous to torsion of elliptic curves. (See Várilly-Alvarado's AWS 2015 notes for more discussion.)

## Jumping of Picard numbers

The Picard number (resp. geometric Picard number) does not decrease under specialization from $X$ to $X_{\mathfrak{p}}$, but may increase. If $\tilde{\rho}_{X}$ is odd then it must increase!

Nonetheless, by combining information from two primes of good reduction, one can often use zeta function information to pin down $\tilde{\rho}_{X}$. E.g., van Luijk gave an explicit example where $\tilde{\rho}_{X}=1$ is established using brute force computations modulo 2 and 3 .

For fixed $X$, one can study frequency of Picard number jumping; some experiments have been done (Costa-Tschinkel). For $\rho_{X} \gg 0$, this is related to supersingular reductions of abelian varieties, for which some infinitude results are conjectured (Lang-Trotter) and/or known (Elkies, Charles).

A certain infinitude statement for Picard number jumping would imply that every K 3 surface over $\mathbb{C}$ contains infinitely many rational curves (Bogomolov et al, Li-Liedtke).

## Jumping of Picard numbers

The Picard number (resp. geometric Picard number) does not decrease under specialization from $X$ to $X_{\mathfrak{p}}$, but may increase. If $\tilde{\rho}_{X}$ is odd then it must increase!

Nonetheless, by combining information from two primes of good reduction, one can often use zeta function information to pin down $\tilde{\rho}_{X}$. E.g., van Luijk gave an explicit example where $\tilde{\rho}_{X}=1$ is established using brute force computations modulo 2 and 3 .

For fixed $X$, one can study frequency of Picard number jumping; some experiments have been done (Costa-Tschinkel). For $\rho_{X} \gg 0$, this is related to supersingular reductions of abelian varieties, for which some infinitude results are conjectured (Lang-Trotter) and/or known (Elkies, Charles).

A certain infinitude statement for Picard number jumping would imply that every K 3 surface over $\mathbb{C}$ contains infinitely many rational curves (Bogomolov et al, Li-Liedtke).

## Jumping of Picard numbers

The Picard number (resp. geometric Picard number) does not decrease under specialization from $X$ to $X_{\mathfrak{p}}$, but may increase. If $\tilde{\rho}_{X}$ is odd then it must increase!

Nonetheless, by combining information from two primes of good reduction, one can often use zeta function information to pin down $\tilde{\rho}_{X}$. E.g., van Luijk gave an explicit example where $\tilde{\rho}_{X}=1$ is established using brute force computations modulo 2 and 3 .

For fixed $X$, one can study frequency of Picard number jumping; some experiments have been done (Costa-Tschinkel). For $\rho_{X} \gg 0$, this is related to supersingular reductions of abelian varieties, for which some infinitude results are conjectured (Lang-Trotter) and/or known (Elkies, Charles).
A certain infinitude statement for Picard number jumping would imply that every K3 surface over $\mathbb{C}$ contains infinitely many rational curves (Bogomolov et al, Li-Liedtke).

## Jumping of Picard numbers

The Picard number (resp. geometric Picard number) does not decrease under specialization from $X$ to $X_{p}$, but may increase. If $\tilde{\rho}_{X}$ is odd then it must increase!

Nonetheless, by combining information from two primes of good reduction, one can often use zeta function information to pin down $\tilde{\rho}_{X}$. E.g., van Luijk gave an explicit example where $\tilde{\rho}_{X}=1$ is established using brute force computations modulo 2 and 3 .

For fixed $X$, one can study frequency of Picard number jumping; some experiments have been done (Costa-Tschinkel). For $\rho_{X} \gg 0$, this is related to supersingular reductions of abelian varieties, for which some infinitude results are conjectured (Lang-Trotter) and/or known (Elkies, Charles).
A certain infinitude statement for Picard number jumping would imply that every K3 surface over $\mathbb{C}$ contains infinitely many rational curves (Bogomolov et al, Li-Liedtke).

## Contents

## (1) Overview

(2) Curves
(3) K3 surfaces
(4) Calabi-Yau (CY) threefolds

## (5) Afterword

## Zeta functions of CY threefolds

For $X$ a $C Y$ threefold over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 3}(T)}{(1-T)(1-q T)\left(1-q^{2} T\right)\left(1-q^{3} T\right)}, \quad P_{X, 3}(T) \in 1+T \mathbb{Z}[T]
$$

Note that there is no a priori bound on $\operatorname{deg}\left(P_{X, 3}\right)$.
In many cases of interest, $P_{X, 3}(T)$ will have a known factor of the form $Q_{Y, 1}(q T)$ where $Y$ is a curve or abelian variety. For example, if $X$ is a smooth quintic in $\mathrm{P}^{4}$ then $\operatorname{deg}\left(P_{X, 3}\right)=104$, but if $X$ belongs to the Dwork pencil

$$
x_{0}^{5}+\cdots+x_{4}^{5}+\lambda x_{0} \cdots x_{4}=0
$$

then $P_{X, 3}(T)$ has a known factor of degree 100 .
Known factors can usually be explained by geometric considerations, e.g., by comparing toric embeddings.

## Zeta functions of CY threefolds

For $X$ a $C Y$ threefold over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 3}(T)}{(1-T)(1-q T)\left(1-q^{2} T\right)\left(1-q^{3} T\right)}, \quad P_{X, 3}(T) \in 1+T \mathbb{Z}[T]
$$

Note that there is no a priori bound on $\operatorname{deg}\left(P_{X, 3}\right)$.
In many cases of interest, $P_{X, 3}(T)$ will have a known factor of the form $Q_{Y, 1}(q T)$ where $Y$ is a curve or abelian variety. For example, if $X$ is a smooth quintic in $\mathrm{P}^{4}$ then $\operatorname{deg}\left(P_{X, 3}\right)=104$, but if $X$ belongs to the Dwork pencil

$$
x_{0}^{5}+\cdots+x_{4}^{5}+\lambda x_{0} \cdots x_{4}=0
$$

then $P_{X, 3}(T)$ has a known factor of degree 100 .
Known factors can usually be explained by geometric considerations, e.g., by comparing toric embeddings.

## Zeta functions of CY threefolds

For $X$ a $C Y$ threefold over $\mathbb{F}_{q}$, its zeta function has the form

$$
\frac{P_{X, 3}(T)}{(1-T)(1-q T)\left(1-q^{2} T\right)\left(1-q^{3} T\right)}, \quad P_{X, 3}(T) \in 1+T \mathbb{Z}[T]
$$

Note that there is no a priori bound on $\operatorname{deg}\left(P_{X, 3}\right)$.
In many cases of interest, $P_{X, 3}(T)$ will have a known factor of the form $Q_{Y, 1}(q T)$ where $Y$ is a curve or abelian variety. For example, if $X$ is a smooth quintic in $\mathrm{P}^{4}$ then $\operatorname{deg}\left(P_{X, 3}\right)=104$, but if $X$ belongs to the Dwork pencil

$$
x_{0}^{5}+\cdots+x_{4}^{5}+\lambda x_{0} \cdots x_{4}=0
$$

then $P_{X, 3}(T)$ has a known factor of degree 100 .
Known factors can usually be explained by geometric considerations, e.g., by comparing toric embeddings.

## Comparison of Galois representations (e.g., modularity)

In some cases, the Galois representation associated to two different motives can be identified up to semisimplification, implying an equality of L-functions. This is a finite ${ }^{1}$ computation: once one has enough matching local factors, an argument of Faltings-Serre kicks in.

This can be used to establish comparisons of $L$-functions between various varieties and modular forms (i.e., modularity). For CY threefolds, this has been done by van Geemen-Nygaard, Dieulefait-Manoharmayum, Verrill, Ahlgren-Ono, Saito-Yui, Livné-Yui, Meyer, Lee, Hulek-Verrill, Schütt, Cynk-Hulek, Gouvêa-Yui, Dieulefait-Pacetti-Schütt, etc.

This is also feasible in higher dimensions; see Cynk-Hulek.

[^0]
## Comparison of Galois representations (e.g., modularity)

In some cases, the Galois representation associated to two different motives can be identified up to semisimplification, implying an equality of L-functions. This is a finite ${ }^{1}$ computation: once one has enough matching local factors, an argument of Faltings-Serre kicks in.

This can be used to establish comparisons of $L$-functions between various varieties and modular forms (i.e., modularity). For CY threefolds, this has been done by van Geemen-Nygaard, Dieulefait-Manoharmayum, Verrill, Ahlgren-Ono, Saito-Yui, Livné-Yui, Meyer, Lee, Hulek-Verrill, Schütt, Cynk-Hulek, Gouvêa-Yui, Dieulefait-Pacetti-Schütt, etc.

This is also feasible in higher dimensions; see Cynk-Hulek.

[^1]
## Arithmetic aspects of mirror symmetry

In certain cases, pairs of CY threefolds occurring in mirror families have related factors in their $L$-functions. This was observed in the Dwork pencil and its mirror by Candelas-de la Ossa-Rodriguez Villegas and more generally by Gährs, Miyatami, and Doran-Kelly-Salerno-Sperber-Voight-Whitcher. (This is not exclusive to dimension 3 ; some of the examples are K3 surfaces.)

Is there something more general going on here? Would experimental data about L-functions of CY (or other) varieties help identify the right framework?

## Arithmetic aspects of mirror symmetry

In certain cases, pairs of CY threefolds occurring in mirror families have related factors in their L-functions. This was observed in the Dwork pencil and its mirror by Candelas-de la Ossa-Rodriguez Villegas and more generally by Gährs, Miyatami, and Doran-Kelly-Salerno-Sperber-Voight-Whitcher. (This is not exclusive to dimension 3; some of the examples are K3 surfaces.)

Is there something more general going on here? Would experimental data about $L$-functions of CY (or other) varieties help identify the right framework?

## Contents

## (1) Overview

(2) Curves
(3) K3 surfaces
(4) Calabi-Yau (CY) threefolds
(5) Afterword

## Hypergeometric motives

A family of motives indexed by a rational parameter $t$ is hypergeometric if its associated Picard-Fuchs equation is hypergeometric; in particular, it has singularities only at $t=0,1, \infty$. There are many Hodge vectors that can occur, which touch many interesting cases.

One can compute zeta and L-functions of hypergeometric motives efficiently using a $p$-adic version of the finite hypergeometric trace formula (Greene, Katz, Cohen-Rodriguez Villegas-Watkins) or by computing the Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where $L$-functions can be computed even when p-adic cohomology cannot be computed directly (e.g., most cases of dimension $>4$ ). I would expect similar considerations to apply to GKZ-hypergeometric families (indexed by multiple parameters), which would provide even more examples.

## Hypergeometric motives

A family of motives indexed by a rational parameter $t$ is hypergeometric if its associated Picard-Fuchs equation is hypergeometric; in particular, it has singularities only at $t=0,1, \infty$. There are many Hodge vectors that can occur, which touch many interesting cases.

One can compute zeta and $L$-functions of hypergeometric motives efficiently using a $p$-adic version of the finite hypergeometric trace formula (Greene, Katz, Cohen-Rodriguez Villegas-Watkins) or by computing the Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where L-functions can be computed even when $p$-adic cohomology cannot be computed directly (e.g., most cases of dimension $>4$ ). I would expect similar considerations to apply to GKZ-hypergeometric families (indexed by multiple parameters), which would provide even more examples.

## Hypergeometric motives

A family of motives indexed by a rational parameter $t$ is hypergeometric if its associated Picard-Fuchs equation is hypergeometric; in particular, it has singularities only at $t=0,1, \infty$. There are many Hodge vectors that can occur, which touch many interesting cases.

One can compute zeta and $L$-functions of hypergeometric motives efficiently using a $p$-adic version of the finite hypergeometric trace formula (Greene, Katz, Cohen-Rodriguez Villegas-Watkins) or by computing the Frobenius structure on the hypergeometric equation (Dwork, K).

This potentially gives divers(e) cases where $L$-functions can be computed even when $p$-adic cohomology cannot be computed directly (e.g., most cases of dimension $>4$ ). I would expect similar considerations to apply to GKZ-hypergeometric families (indexed by multiple parameters), which would provide even more examples.


[^0]:    ${ }^{1}$ This statement does not include a runtime bound. A weak bound can be obtained using analytic number theory, but in practice very few local factors are needed.

[^1]:    ${ }^{1}$ This statement does not include a runtime bound. A weak bound can be obtained using analytic number theory, but in practice very few local factors are needed.

